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Abstract—Distributed sensor webs typically operate in dy- 1. INTRODUCTION
namic environments where operating conditions, transien}& . . .

- variety of sensor webs [1] can now provide data in near
phenomena, availability of resources, and network connec-

tion quality change frequently and unpredictably. Oftest rgal-tlme to help. scientists study and predict weathegynat _
) o disasters, and climate change. Modern sensor webs enable in
changes can neither be completely anticipated nor actyrate

described during development or deployment. Our priorformauon to be gathered from sensors around the globe and

work has described how we developed agents and servicé]émkly transmitted to local or remote servers where signif

o ; o iCant computational resources are available for modetibuil
that are capable of monitoring these changing conditiods an . data analvsis. and orediction. With the appropriate in
adapting system parameters using the CORBA Compone?tg’ ySIS, P ) pprop

Model (CCM) deployment infrastructure as part of Malti- rastructure, these systems can facilitate the real-tiotlec

agent Architecture for Coordinated Responsive Obsematio tion and ana!yas of sensor_data even under qhangmg_em_/lron
mental conditions and multiple concurrent science objesti
(MACRO) platform.

Our recent application of MACRO to thgouth East Alaska Sensor webs are large-scale, ne'_(worked syste_ms o.ften
made up of heterogeneous computing platforms including

MOnitoring Network for Science, Telecommunications, Ed- . o X
ucation, and ResearctSEAMONSTER) project has iden- both commaodity servers and distributed real-time embedded

o L . DRE) systems. Unfortunately, the configuration and opera-
tified new distributed deployment infrastructure challesg 'Eion o)f ir?dividual sensor websyare often %erformed i |OI

common to computationally constrained field environment% c manner, which impedes adding new sensors, updating/-

in adaptive sensor webs. These challenges include Standarr%oodifying their software, and reconfiguring them to accom-

ized execution of low-level hardware-dependent actiorts an . " . .
modate evolving conditions and changing science needs.

on-going data tasks, automated provisioning of agentsdr h
erogeneous field hardware, and minimizing deployment in- . . .
frastructure overhead. This paper describes how we exdiendel"ke other DRE systems, such as shipboard computing [2]

MACRO to address these sensor web challenges by creatin%r;d fractionated spgcecraft [3], the field sul_)sys_tems of sen
. = . r webs can benefit from recent advances in middleware in-
an action/effector framework standardizing the executibn

lightweight actions and providing for automated provision frastructures. ‘The use ajuality-of-service (QoS)-enabled

ing of MACRO agents, in addition to footprint optimizations ;O;]gogrenn;nrp'gdslfgvr:rrzzfjrfeu;?;nnieerrﬁ;nn(itlgg’ lgferg])éi:te and
to the underlying CCM infrastructure. 9  SY 9 » depioy '

configuration in DRE systems. QoS-enabled component mid-
dleware supports explicit configuration of QoS aspeetg,(

TABLE OF CONTENTS priority and threading models), and provides many desérabl
real-time featurese(g, priority propagation, scheduling ser-
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ous work described the design of thellti-agent Architecture  Distributed Deployment and Adaptation Challenges in SEA-
for Coordinated Responsive ObservatiofdACRO) [4], MONSTER
which provides a QoS-enabled component middleware platE

. . Effective deployment of data collection and filtering appli
form that automates many SVSterT‘ configuration _and Managdens on SEAMONSTER field hardware and dynamic adap-

. %ation to changing environmental conditions and resource

system management and autonomous operation of config- = . A ;

urable sensor webs in onen DRE svstem environments Th|sva”ab'“ty present significant software challenges féi- e

pen Y " clent operation of SEAMONSTER. While SEAMONSTER

paper addresses new distributed deployment challenges ré- . L . !

: ) servers provide significant computational resources, &b fi

sulting from applying the MACRO platform to th8outh . . )

= : hardware is computationally constrained. The serveréase

East Alaska MOnitoring Network for Science, Telecommu-lvIACRO agents perform extensive planning and schedulin

nications, Education, and Resear(BEAMONSTER) [5], 9 P P 9 9

N . Lo ._to provide direction and coordination of tasks performed by

which is a representative sensor web for monitoring glacia : o ) :
he computationally limited field resources. In the fielct th

change and watershed effects.

limited computational resources require software sohgio

The remainder of this paper is organized as follows: Sec\-NIth a small footprint and low computational complexity.

tion 2 summarizes adaptive sensor web challenges in SEA-. .
. . . . ield nodes in a sensor web often have a large number of
MONSTER, including standardized execution of low-level . ; .
observable phenomena in their area of interest. The type,

hardware-dependent actions and on-going data tasks, aut

N . dgl]ration, and frequency of observation of these phenomena
mated provisioning of agents for heterogeneous field hard- . . i
may change over time, based on changes in the environment,

ware, and minimizing deployment infrastructure overhead; . : :
. . occurrence of transient events in the environment, andgshan
Section 3 describes how we addressed these challenges by ex- o . o
. . : ing goals and objectives in the science mission of the sensor
tending MACRO to include an au:tlon/ef'fectorframeworkthatWeb Moreover, limited power, processing capability, st
standardizes the execution of lightweight actions, autema ' ' P P gcap Y '

the provisionina of MACRO agents. and ootimizes the foot_and network bandwidth constrain the ability of these nodes
prin'?of the und%rlying QoS-engabIeo’I compgnent middlewareto continually perform observations at the desired fregyen
Section 4 empirically evaluates how these extensions aeidreanOI fidelity. Dynamic changes in environmental conditions

deployment challenges: Section 5 compares MACRO with reE:oupled with limited resource availability requires indival

) g ; nodes of the sensor web to rapidly revise current operations
lated work; and Section 6 presents concluding remarks. .
and future plans to make the best use of their resources.

2. MOTIVATION To handle dynamic changes effectively, sensor web nodes
Overview of SEAMONSTER must be capable of goal-driven, functional adaptation. é4or

. ) over, they must be able to adapt the local system in light of
SEAMONSTER is a glacier and watershed sensor web at thgssoyrce constraints and fluctuations throughout the senso

University of Alaska Southeast (UAS) in Alaska [5]. This \yep to maintain efficient and correct operation of the over-
sensor web monitors and collects data regarding glacier dyy)| system. Prior work [9] describes how MACRO addresses
namics and mass balance, watershed hydrology, coastal M@ese challenges by combining the planning and resource
rine ecology, and human impact/hazards in and around thg,anagement services of its server agents with the template
Lemon Creek watershed and Lemon Glacier. The collected|an schemas of its field agents. This paper extends our prior

data is used to study the correlation between glacier veloGyori py focusing on the following unexplored challenges as-
ity, glacial lake formation and drainage, watershed hyalipl  sociated with providing a flexible deployment infrastruetu

and temperature variation. to support system management and dynamic adaptation of the
] SEAMONSTER field nodes.

The SEAMONSTER sensor web includes sensors and weath-

erized computer platforms that are deployed on the glaciegnajienge 1: Standardized Execution of Planned Low-Level

and throughout the v_vatershed to collect data of scientific in aoctions and Data Tasks

terest, as shown in Figure 1. The data collected by the sensor

is relayed via wireless networks to a cluster of servers thaMost tasks performed by MACRO agents on the SEAMON-

filter, correlate, and analyze the data. These data callecti STER server cluster involve on-going data processing and

and processing applications are being transition to rup ato analysis that are implemented by components selected and

QoS-enabled component middleware platform consisting ofonfigured during planning/scheduling. A scheduled plan

the Component-Integrated ACE ORBIAO) [6], which is  for the deployment and operation of these configured com-

open-source, QoS-enabled, component middleware that inonents is passed to a resource management service, which

plements the OMG Lightweight CORBA Component Model allocates them to individual server nodes and adjusts config

(CCM) [7] and Deployment and Configuration [8] specifica- Uration settings and operating system parameters to handle
tions. fluctuations in resource usage and availability. The resour

management service employs the deployment infrastructure
to coordinate the deployment, configuration, connectiod, a
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Figure 1. SEAMONSTER field sensors and UAS servers

execution of the specified components. This provides a star€hallenge 2: Automated Agent Provisioning for a Variety of
dardized, flexible system for implementing tasks as configField Hardware

ured components. . .
P Field nodes in a sensor web may have a large number of pos-

. . . ._sible configurations, due to a variety of sensors, software,
Data collection and transmission tasks on field nodes are im-

and situations that they may be tasked to observe and react
plemented as components for the same reasons as data p,

. I8- Consequently, the agents that manage these nodes must
cessing tasks on the servers. However, many of the other a '

tivities that MACRO agents plan and perform on field nodesBe as flexible as possible. Hard cpdlng available tasks into
: . agent code requires that new versions of each agent be cre-
consist of low-level, hardware-dependent actions that exe I
X . ated as nodes add new responsibilities or hardware. The solu

cute only briefly to configure sensors or the power manage:-

ment hardware subsystem. Implementing these short-live%lOn developedto address the challenge described in Settio

] . ; should include integration with the deployment infrastane
actions” as components would require proportionally much

. . to download and load at run-time appropriate action imple-
greater overhead for their deployment and execution than fo . . . .
entations. Section 3 describes how the deployment infras-

data processing “tasks” that execute over a long period of. . -
. . fructure may be leveraged to dynamically provision agents
time and must transmit data streams to other components

Given the limited computational resources available ol fiel with available, context-specific actions at deploymenetim
nodes, the overhead for implementing brief, low-levela@tsi

. Challenge 3: Minimizing Deployment Infrastructure Over-
as components is unacceptable.

head

An additional, smaller level of granularity for action inegl The SEAMONSTER sensor web, described in Section 2,

mentation is therefore necessary for efficient execution ofncludes many field nodes operating with extremely lim-

many planned activities on field nodes. While the agentsted computational resources. SEAMONSTER includes two

could implement these actions directly, it would requiredha types of computational platforms for field nodes [10]:

coding of hardware-dependent actions into each field agent.

Alternatively, grouping these actions into larger preaplad e Primary Microservers. These units are weatherized single

sets of actions executing as a component would proportiorboard computers (SBC) that are designed to have very lim-

ally reduce the overhead. However this would negatively im-ted power consumption and precise control over the power

pact maintainability through duplication of action codgse consumption of the SBC and attached devices. The SBC is a

ments and constrain the available options for planning. Incommercial off-the-shelf (COTS) product that has a 200 MHz

stead, a standardized deployment and execution frameworlgw-power ARM processor with 64 MB of built-in RAM.

such as that provided by the middleware for components, but

with lower overhead, would greatly enhance the maintain-e Adjunct Microservers. These units are repurposed COTS

ability of the system and simplify initial system developmhe Linksys NSLU-2 network attached storage devices that are

Section 3 describes how such a framework has been designedsentially inexpensive SBCs. These computers consist of

and incorporated in MACRO to address this challenge. a 133 Mhz (with simple hardware modifications possible to
reach 266 MHz) ARM processor with 32 MB of built in
RAM. These units provide a low-cost alternative to using Pri
mary Microservers for some field nodes, however they lack



powercontrol capabilities and have even more limited compuachieved at the server or by individual field nodes and (2)
tational power primarily due to the minimal amount of RAM. plan/schedule for their achievement.

Each platform presents an environment where the resideith information from field agents about current conditions
footprint of the middleware infrastructure and componemnti and local activities, SA-POP produces scheduled, high ex-
plementations is critically important. Excessive footpuvill pected utility plans to achieve an optimized set of current
at best cause excessive memory swapping to occur, signifgoals. These scheduled plans are also broken into sub-
cantly degrading performance and shortening the life of atplans by SA-POP. These subplans describe (1) the selection/
tached flash drives, and at worst cause deployment failureonfiguration of server-based software components, which
due to exhaustion of memory, as happened occasionally duare allocated and managed by the RACE service on the
ing initial trials of MACRO software in the SEAMONSTER servers, and (2) hardware-dependent actions on individual
testbed. Section 3 describes initial efforts to reducedlo&-f  field nodes, as well as additional component deployments.
print of the middleware and Section 6 describes our planned

approach to further reduce middleware overhead. Although the sub-plans generated by SA-POP on the servers
can provide an important starting point for deployments and
3. MINIMIZING |INFRASTRUCTURE actions on the field nodes, changing local conditions may in-
OVERHEAD IN MACRO validate those plans or require modification to them foreffe

. ] . tive, rapid reaction to environmental phenomena and chang-
This section explains how MACRO addresses the challengegg resource availability. Since local field agents havétéoh
described in Section 2. We begin with an overview of thecomputational resources, extensive planning and scheguli

agent-based system developed in our previous work, along,ch as that provided by SA-POP, is not possible for rapid
W|th_ a description of its mldc_zlleware infrastructure. Werthe (eaction to local changes. Instead, field agents use a set of
outline the new MACRO Action/Effector framework and ex- template plan schemas that cover a range of conditions and

plain how it addresses the deployment infrastructure chalyycg) subgoals to which they are applicable.
lenges encountered in the SEAMONSTER project.

_ Server-based agents provide the field agents with the cur-
Overview of MACRO rent set of local subgoals to pursue and suggested schema

The Multi-agent Architecture for Coordinated, Responsiveinstantiations corresponding to the sub-plans produced by
Observation§MACRO) platform provides a powerful com- SA-POP. The task of the field agent is therefore the simpler
putational infrastructure for enabling the deploymenin-co choice of an appropriate set of schemas to instantiate ak loc
figuration, and operation of large-scale sensor webs tieat aconditions evolve. The extensive planning/scheduling per
composed of many constituent sensor webs. Figure 2 show8'med by MACRO server agents using SA-POP—together

how MACRO supports intelligent autonomy via agents at thevith the choice of plan schemas to instantiate by MACRO
following two levels of abstraction: field agents—provide effective system adaptation to aehiev

science goals in light of changing environmental condgion

e Mission level where agents interact with users to allocate@nd resource availability.

high-level science tasks to sensor webs and coordinatedsche _ _ _ _
uled plans to achieve these goals, and The implementation of agents in MACRO is based on the

CIAO [6] QoS-enabled component middleware (described
« Resource levelwhere local server and field agents achieveln Section 3 to ensure interoperability across heterogeneo
mission goals through functional adaptation of a sensor we§omputing platforms, reduce d_e_velopmentcosts, and ingprov
in light of current environmental conditions and resourceoverall robustness and scalability. The agents operataen t
availability.

MACRO Agents

The work presented in this paper focuses on the resourde leve
of MACRO, which is applicable to individual sensor webs, RACE SA-POP
such as SEAMONSTER.

CIAO

System adaptation for current conditions and science goals
described as a set of desired data products and results, is
directed by MACRO server-based agents with functional
knowledge of the sensor web system and available software
components and actions. MACRO server-based agents em-
ploy novel services, such as tBpreading Activation Partial
Order Planner(SA-POP) [11] and th&kesource Allocation _ ) _
and Control EnginéRACE) [12]. These agents use the SA- QIAO middleware to ensure that a diverse set of science ob-

POP service to (1) decompose goals into subgoals that a}gctives can be met, as shown in Figure 3. This architecture

helps facilitate real-time, adaptive data acquisitiorglgsis,

0os

Hardware

Figure 3. The MACRO Architecture
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Figure 2. MACRO Agent Architecture
fusion, and distribution. The DnCrun-time modein CIAO is implemented by thBe-

ployment And Configuration EngifBAnCE) [18]. DANCE
Overview of MACRO'’s QoS-enabled Component Middlewarés a set of daemons executing in th@main which is the col-
The MACRO mideware nasiucure i based on heeclon O 046 914 SOnmEAton mehode o compre
CORBA Component Model (CCM) [13], which is an 9 ment. imp . )
. . model are shown in Figure 4 and include:
extension to the Common Request Broker Architecture
(CORBA) [14] that supports Component Based Software En-

gineering. CCM enhances re-usability by allowing develop- [Repository] [ . ] [ Target ]

ers to focus only on application business logic, abstrgctin

. . 8 . Manager Manager Manager
away the details of communication and configuration. Com-
ponents interact with one another only through well-defined T f
ports, which includefacets (provided interfaces)recepta- | ————— B
cles(required interfaces), arel’ent sources and sinkasyn- e R e -
chronous publish/subscribe transport). ! : :

: ; : :
Node Node Node
The CCM middleware used in MACRO is ti@®mponent In- Manager Manager Manager

tegrated ACE ORBCIAO) [15]. CIAO is a QoS-enabled im-
plementation of the Lightweight CCM (LWCCM) [16] speci- Hode e Hode
fication built on top ofThe ACE ORRETAQ). CIAO provides
a clear separation of concerns betweenfiguration logic

specified at deployment time via XML-based meta-data, and Figure 4. DAnCE Daemons
business logic

CIAO’s deployment and configuration capabilities are pro-e Node Manager, which is a daemon that runs on all nodes
vided by theDeployment and Configuration of Componentin the domain and is responsible for deploying, configuring,
Based System(®nC) [17] specification, which was created and managing all components deployed to that node. This
by the OMG in response to the need for generic and standaemon also supports monitors necessary to report resource
dard mechanisms for deploying component-based applicstatus on the node to the MACRO agents. Each node in the
tions. The DnC standard includes botldata model(i.e,  sensor web will have a running Node Manager.
descriptions of components, component compositionsgtarg
domains, and associated configuration meta-data) and-a e Execution Manager, which is a daemon that coordinates
time mode(i.e., a set of interfaces used to manage applicatiorthe activities of allNode Manageri a given domain. This
life-cycles). daemon is the primary point of control for the life-cycle of
all component applications. Primary microservers witledlir



connections to the SEAMONSTER server cluster will havestruct Property{
Execution Managers. string name;
any value;
e Target Manager, _whi_c_h i_s a dgemon that_ collates an_d re- }{)’/pedef sequenceProperty> Properties
ports resource availability in a given domain. Informatisn valuetype Action_Info {
collected from resource monitors installed in individdalde public string id; .
M Like the Execution Managerthis daemon will public Properties resourceequirements
anager; : ’ _ge ; public Properties initarguments
run on primary microservers with direct connections to the public Properties execarguments
servers. public Properties referenceequirements

}

° Repqsitory Manager, which is a daemon_that maintains a Listing 1. Action Meta-Data IDL
collection of component meta-data and binary implementa-
tions. IndividualNode Managersnay contact nearby reposi-
tories to download binaries for components they are tasked
to deploy, and MACRO agents may query the repository
for information about components available for deployment
An instance of theRepository Managewill run on the pri-
mary server for use by the MACRO server agents and servelocal interface Action {
deployments. Another instance will reside on primary mi- readonly attribute Action_Info info;
croservers with direct connections to SEAMONSTER server xg:g ér)‘(';éjt'éz (Gen (;”nyoglrgﬁﬂqernetfsere”Ces?)
cluster for use by nodes in the field. out any result)
void release ()

Applying MACRO to Address SEAMONSTER Challenges }:

The remainder of this section explains how MACRO applies Listing 2. Action Interface
and enhances the CIAO and DANCE middleware described

above addresses the sensor web challenges identified in Sec-

tion 2.

Addressing Challenge 1: MACROQO’s Action/Effector Frame-
work—MACRO's Action/Effector framework has been devel-
oped to provide a standardized mechanism that has two pri.iion itself.

. ) ) , , X This interface provides a vehicle for provi-
mary benefits for implementing short-lived, lightweight*a

o N L sion of meta-data, and operations to manage the full lifecy-
tions,” as opposed to on-going “tasks” implemented as COMg|q of an Action. To provide lightweight actions with mini-

ponents. First, it allows the MACRO agents with their SA- 5| oyerhead, this interface is specified deeal interface,
POP planning service and plan schemas to use a COMMQpyich instructs the CORBA IDL compiler to omit generation
vocabulary for describing preconditions, dependencied, a o code that allows for remote invocation of the object, cre-
effects of individual actions, as well as resource requeRISl  a4in g 4 |ocality constrained object. This design subsadigti

of the associated action implementations. Second, it &8I o,ces overhead, as shown in Section 4. While this locality
a clear separation of concerns between invoking the actiop,ngraint prevents MACRO agents from directly accessing
and the business logic of the action, similar to that of cOm-pion gbjects, the framework provides a mechanism which
ponentsj.e., it provides a mechanism that agents can use Q55 not constrain their use by those agents. This framework
execute a set of actions without knowledge at compile or linky o5 MACRO agents to access and execute actions while
time of the implementation of those actions. hiding the complexities of action deployment and execution

. . ) ) through the Effector interface described in Section 3.
Action meta-data. Listing 1 describes thécti on_l nfo

data structure which allows an action to provide meta-datgne action attribute nf o allows the Action implementation
about itself to the system/agents. This meta-data describg, cait.describe its meta-data, ultimately providing imfa-

properties €., a unique identifier, argument identifiers and i, 5 the agents about its requirements and capabilitieis.
types, return value identifier and type) and requirements ( jnformation is also used by an implementation of the Effecto
CPU and memory requirements, hardware/sensor reSourcqgyeface to determine which object references and argtsnen

and component or object references). This data structure ige (4 pe passed to the operations contained in this Action in
implemented as a CORBA valuetype, which will leave open t,.e

the possibility for derivation though inheritance shoutldia

tional fields ”?eﬂ' to F’e add.ed later WithOUt_ breaking backrpege operations allow the Effector to manage the lifecycle
wards compatibility with the interfaces described below. of Actions. Thei ni ti al i ze operation is invoked upon

L . ) , creation of the Action, providing it with object referendes
Action interface. Listing 2 describes the interface for the deployed components and objects that the business logic may

6



extern “‘C"" { component EffectorProvider{
Action_ptr createaction (void); provides Effector effect
} attribute Action_Factories factories

IE

Listing 3. Action Factory
Listing 5. Example Component with Effector

interface Effector {
Action_Info load_action (in string library_name ,
in string factory_name);
void unloadaction (in string id);
Action_Info query.action (in string id);
StringSeq listactions ();
void executeaction (in string id,

in any arguments , .
out any result) MACRO | ... ... .. . Implementation
¥ Agent

Effector to execute an Action.

execute_action

Listing 4. Effector Interface Effector Implementation

Figure 5. The Action/Effector Framework

Addressing Challenge 2: Providing Flexible Agent Provi-
sioning—The Action/Effector framework described in Sec-
need in order to successfully execute. Eheecut e oper-  tion 3 provides a mechanism through which MACRO agent
ation implements the business logic of the Action. This op-implementations may be dynamically provisioned at deploy-
eration accepts two parameters, both of type CORBA Anyment time with Action objects apropos to the particular hard
which is a generic container which may contain any validware configuration, including its suite of available sesson
CORBA data type, allowing the Actions to accept argumentsvhich the agent resides. Component interface descriptions
or provide results in a flexible, but standardized, mannier. F similar to standard CORBA object descriptions, may have at-
nally, ther el ease operation informs the Action that it is tributes of arbitrary types. As seen in Listing 5, the exampl
about to be deallocated so that it may release any resourceemponent has an attribute of typet i on_Factori es,
that it holds. which is a sequence of structures containing a pair of string
member variables indicating a library name and factory sym-
Each Action implementation provides a factory method (arbol name.
example of which is found in Listing 3) that is used by the Ef-
fector to construct instances of the action at run-time.il@im Component deployments are described via XML files that
to the method used by the DnC specification [17] to con-capture information about component configuration, topol-
struct component instances, this factory method is dettlareogy, and connections. These XML descriptors may be used to
asextern ** C ', which will allow the Effector interface populate the value of this attribute with desired libraryed
to load actions at run-time using methods similadtmpen factory name pairs at deployment time. Moreover, through
anddl sym the mechanism used to describe the implementation depen-
dencies of component&€., shared libraries implementing a
Effector interface. Listing 4 describes the Effector inter- component), it is possible to indicate to the NodeManager
face, which is used by the MACRO agents to load and exthat shared libraries implementing Actions also be down-
ecute actions. This interface is provided as either a facet doaded from the RepositoryManager, as described in Sec-
a supported interface on a component. It is used by MACRQion 3. This approach allows the component providing the
agents to execute plans/schemas and interact with the cor&ffector interface to invoke thieoad_act i on operation for
ponents providing abstractions of the available hardwase, each library/entrypoint pair provided during activation.
shown in Figure 5. For example, thead_act i on method
may be used by an agent or other Effector client to load a neviddressing Challenge 3: Reducing Middleware Footprint—
action from a named shared library that contains a providedhitial efforts to run MACRO (and the associated middleware
factory symbol. The operations on the Effector interface al infrastructure) presented difficulties and, in some cafsdls,
low MACRO agents to (1) manage the lifecycle of Actions ures due to the large footprint of the default configuratibn o
installed in the Effector, (2) determine which Actions have CIAO and the limited memory capacity of the SEAMON-
been loaded and query their meta-data, and (3) instruct th8TER nodes. To reduce memory footprint, the initial applica

7



tion of the deploymentinfrastructure to SEAMONSTER field ing all required symbols from the underlying middlewar@int
hardware included two straightforward modifications: the final binary, ensuring that all necessary symbols from
the underlying middleware are present, while not including
e Leverage compiler optimizations. Most compilers have any unnecessary symbols. For the purposes of calculating
the ability to provide space-saving optimizations to mostthe size of a component, we assume that any symbols nec-
code, which an experienced programmer can easily leveragessary from the underlying middleware were already present
to provide footprint reduction. in the component server, and thus the calculation of the com-
ponent footprint sizes was obtained by summing the size of
e Leverage mechanisms present in underlying middle- thesharedlibraries that implement the component. This size
ware. The build system of the middleware underpinning of includes CORBA stubs and skeletons, the servant (the com-
CIAO provides configuration settings that allow one to stripponent specific portions of the container), and the executor
unneeded features from compiled binaries, which can profbusiness logic) implementation.
vide also provide substantial footprint savings in reseurc
constrained environments. Runtime results were obtained using a primary microserver
described in Section 2. This microserver consists of a 266
While these steps are relatively straightforward and not pa Mhz ARM processor with 64 MB of built-in RAM. The op-
ticularly novel, Section 4 shows that they were sufficienterating system is a derivative of the Debian Sarge running
to reduce the static footprint of the middleware stack to aGNU/Linux kernel 2.4.26, which was provided by the manu-
level that allowed successful use of the MACRO platform onfacturer of the microserver (Technologic Systems).
SEAMONSTER hardware. Section 6 discusses the approach
we are undertaking to further reduce middleware footprint/ Initial Footprint Reduction

overhead. The results of the efforts described in Section 3 are sum-

marized in Table 4. TheExecuti onManager and
4. EXPERIMENTAL RESULTS

This section presents the results of experiments that atealu | Entity | Default | Optimized | Savings |
(1) the effectiveness of MACRO's Action/Effector framewor | ExecutionManagef| 12,203 KB | 11,136 KB | 1,067 KB
for lightweight, hardware-dependent actions and (2) the re_NodeManager 13,865KB | 12,623 KB | 1,242 KB
duction of middleware footprint described in Section 3. J&e | NodeApplication || 12,710KB| 11,460KB | 1,250 KB
results show that the efforts described reduced the taa¢st | Null Component 670 KB 605 KB 65 KB
footprint of MACRO and its underlying middleware stack.
They also show the reduction in overhead achieved by imple-
menting short-lived actions in the Action/Effector franmak
discussed in Section 3, rather than using heavier-weight co
ponents.

Table 1. Results of Initial Footprint Optimization

NodeManager (which were described in Section 3) and the
NodeAppl i cat i on (whichis a componentserver spawned
during the deployment process) each experienced a reduc-
tion in footprint of ~1 megabyte. The combined savings

The static footprint results were obtained via a cross-atemp reduced the footprint of node-local infrastructuiee( the
toolchain used to build software for the SEAMONSTER NodeManager andNodeAppl i cati on) from 26.5 MB

hardware. This toolchain consists gft+ 4.1.2 andl d to 24 MB.

2.17, which are hosted on Debian Linux 4.0 and target

arm | i nux-gnu. The CIAO middleware platform was Although this reduction allowed us to deploy and operate

version 0.6.6. a prototype MACRO-based application on the SEAMON-
STER hardware, this deployment consumed nearly all avail-

For the initial baseline results, this platform was congpile able physical memory on the primary microservers, and re-

using default options, with debugging symbols disabled andulted in frequent thrashing on the memory-constrained ad-

the compiler optimization level a3, which instructs the junct microservers. As discussed in Section 6, additional

g++ compiler to optimize for speed. For the results basedyork is needed to further reduce the footprint of the infras-
on our optimization efforts, the middleware was compiled us tructure and component implementations.

ing built-in methods for reducing footprint and the compile

was instructed to optimize usirllg, which instructs thg++  |mpact of Action/Effector Framework on MACRO Execution
compiler to optimize for space. In all cases, we used the GNlWvyerhead

st ri p utility to remove any debugging symbols from the , . , ,

compiled binaries to ensure the footprint metrics just meaMACRO’s Action/Effector framework (described in 3) sub-
sured the size of the executables. stantially reduces footprint overhead compared to using
CIAO’s complete component implementations to encapsulate
SEAMONSTER tasks and actions. Table 4 summarizes the

differences in footprint size between these two approaches

Hardware/Software Testbed and Experiment Methodology

Executable footprint sizes were determined by staticaik|



When implemented as a component, the action has a foothe rich interface-based communication possible with CIAO
The SOFtware Architectures (SOFA) component model [20]

| Implementation Type || Size | based orArchitecture Definition Languagewhich view ap-
Component 623 KB plications as hierarchies of connected components. Tiis co
Action Implementation|| 23 KB ponent model provides capability for run-time modificagon
Effector 123 KB that may be lighter weight than CIAO components, but which

Table 2. Action/Efector Footprint must be descrived aesign Umf21, thereby limiing fex:
Decision-theoretic planning and schedulingThe planning
service used by MACRO server-based agents — SA-POP —is a
Secision-theoretic planner allowing uncertainty both riwie
ronmental conditions and action outcome, like C-SHOP [22]
that does so with hierarchical planning and Drips [23] that
produces conditional plans. However, to enable plannirig wi
resource constraints, such as those of sensor webs, maay hav
chosen to separate the planning and scheduling/resource as
ects of the probleme(g, [24] and [25]). This approach
orks well when the resource/time constraints are relitive
loose or there are relatively few alternatives in the plagni
process that could use fewer or different resources. How-
ever, with tight resource constraints, as are often prasent
sensor webs, others have chosen to integrate planning and
Component 218.96 scheduling as SA-POP does. For example, IXTeT [26] uses
Action/Effector 3.23 partial-order planning like SA-POP and allows interlegvin
Table 3. Action/Effector Footprint resource conflict resolution with the planning process, but
does not perform decision-theoretic planning and incorpo-
rates scheduling/timing information directly into the iant

A more important result, moreover, is the deployment lagenc representation.

experienced by a component compared against the latency

experienced by an Action implementation. In this case, dePlan schemas for resource-constrained planning and
ployment latency refers to the amount of time from the mo-scheduling. The MACRO field agents use plan schemas (also
ment deployment is starte@.(). | oad_act i on in the Ac-  called template plans or skeletal plans) [27], which hase al
tion/Effector framework) until deployment is completecdan been used in other situations where complete planning was
the component or Action is ready for invocation. As showntoo time consuming for appropriate responses. MACRO's
in Table 4, which documents the average of twenty runs oplan schemas have been enhanced with scheduling informa-
each, the difference in deployment latency is dramatich wit tion, such as in [28], and generated through partial order
component deployment requiring over three minutes while aplanning techniques, like [29]. The combination of MACRO
Action is deployed in only three seconds. These results o ngerver-based agents using the SA-POP planning/scheduling
include the time required to download the component impleservice with generated schemas used by MACRO field agents
mentation from th&®eposi t or yManager , which couldbe  provides a uniguely flexible solution for autonomy in sensor
substantial over a bandwidth-limited wireless connectionn ~ Webs with a server cluster connected to DRE field systems.

is only required the first time a component is used on the mi-

croserver. 6. CONCLUDING REMARKS

The SEAMONSTER project exhibits distributed deployment
S. RELATED WORK infrastructure challenges common to computationally con-
This section compares our work on MACRO with relatedstrained field environments in adaptive sensor webs, irclud
work. ing standardized execution of low-level hardware-depahde
actions and on-going data tasks, automated provisioning of
Resource-Constrained Component ModelsProgramming agents for heterogeneous field hardware, and minimizing
in the Many (PitM) [19] is anarchitectural styleaimed at ~deployment infrastructure overhead in general. This paper
the domain of distributed, highly mobile, severely reseurc presents the results of applying the MACRO platform with
constrained embedded systems. While this component modektensions designed to address these deployment challenge
meets the stringent footprint requirements of SEAMON-In SEAMONSTER. In particular, the Action/Effector frame-
STER, it lacks the interoperability and rich ecosystem of se Work addressed key deployment challenges as follows:
vices offered by CORBA and CCM. PitM also limits com-
munication between components to message-passing, ¢ackir Separate concerns by creating a unified mechanism for de-
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print of over half a megabyte, substantially limiting themu
ber of action implementations that could simultaneously b
deployed to a single resource-limited field node.

When the action was implemented in MACRO'’s new Ac-
tion/Effector framework, however, its footprint was onlg 2
KB, which is a fraction of the memory required by an exe-
cuting component. Moreover, an implementation of the Ef-
fector framework as a component facet adds only 123 KB t
the footprint of an existing MACRO agent component, one of
which is required per node.

| Deployment Latency| Average Time (Seconds)




ploying and executing brief, low-level actions. e DaNCE footprint and deployment latency is too high for
resource constrained systemsAs shown in Section 4, the

e Substantially reduce footprint of individual actions wess largest consumers of memory in the middleware stack are the

implementation as a component. DANCE daemons, in particular tHexecut i onManager
andNodeManager . The footprint of the newer deployment

e Improve deployment latency by two orders of magnitudeand configuration aspects of the middleware has been largely

over a similar component implementation. overlooked until now and needs to be addressed. Perhaps
more importantly is the latency experienced during deploy-

The remainder of this section summarizes lessons learnadent, which has been observed to take as long as several min-

from applying MACRO to SEAMONSTER and outlines our utes on SEAMONSTER hardware.

future work optimizing MACRO’s QoS-enabled component

middleware infrastructure. Future Work

To further reduce the overhead of CIAO components and the
DANCE deployment infrastructure, we are working on mul-
The lessons learned from our extensions to the MACRO distiple approaches, including context-aware generativa-tec
tributed deployment infrastructure include: niques to prune unnecessary code/features:

Lessons Learned

e Feasible integration of non-component entitiesThe Ef- e Generative component specializationThe CCM specifi-
fector/Action framework has demonstrated the feasibdity cation includes several features and capabilities in time-co
integrating non-component entities into component assenponent definition that may not be necessary in all situations
blies where footprint, latency, or lifetime rules out theeus such as generic navigation, introspection, and securay fe

of a full component. tures, which contribute to footprint bloat. Generativehtec
niques could be used to prune these features on a case-d®y-cas
e Unitary Effector may limit framework flexibility. A uni- basis.

tary Effector (.e., one which is incapable of operating in a

hierarchical manner with other effectors) may limit flekilgi e Generative container specializationThe CIAO container

in dynamic sensor web environments. Extending the Effectois intended to be a generic solution providing a large fea-

interface to support hierarchical and peer behavior witleot ture set to satisfy user needs in most situations. As such,

Effectors deployed to the same node(s) potentially has twit contains features and services that may not be necessary

advantages: (1) it allows Effectors to expand their vocabuin specific deployments, and could be pruned by generating

lary as nearby nodes and devices power up/down in responseenario-specific container implementations.

to changing power availability and (2) it allows the creatio

of “meta-Actions,” which are ordered compositions of one ore Improve separation of concerns in DANCE.The current

more concrete actions across one or more Effectors. DANCE implementation tangles concerns of deployment and
configuration with the run-time elements of the component

e A synchronous Effector interface may cause unaccept- server in theNodeAppl i cati on. This entanglement in-

able delays.If an Action hangs or takes longer to complete creases footprint by replicating large swathes of deplayme

than expected, the present synchronous interface will alslogic in each component server. Careful analysis and re-

cause the agent plan execution code to hang. This behafactoring is therefore needed to substantially decrease fo

ior is undesirable, however, since it may cause the agent tprint and deployment latency.

miss other important deadlines in its current plan of execu-

tion. Asynchronous Effector and Action interfaces can-alle ACE, TAO, CIAO, DANCE, RACE, and SA-POP are open-

viate this concern. source software that can be downloaded frdown| oad.
dre.vanderbilt. edu.

e CIAO footprint is too large for resource constrained

systems. The stringent resource constrainte( 32-64 MB REFERENCES

RAM and processors operating at 266 MHz or less) of SEA- _ ]
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